By Topic

Globally convergent edge-preserving regularized reconstruction: an application to limited-angle tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Delaney, A.H. ; Sunnyvale, CA, USA ; Bresler, Y.

We introduce a generalization of a deterministic relaxation algorithm for edge-preserving regularization in linear inverse problems. This algorithm transforms the original (possibly nonconvex) optimization problem into a sequence of quadratic optimization problems, and has been shown to converge under certain conditions when the original cost functional being minimized is strictly convex. We prove that our more general algorithm is globally convergent (i.e., converges to a local minimum from any initialization) under less restrictive conditions, even when the original cost functional is nonconvex. We apply this algorithm to tomographic reconstruction from limited-angle data by formulating the problem as one of regularized least-squares optimization. The results demonstrate that the constraint of piecewise smoothness, applied through the use of edge-preserving regularization, can provide excellent limited-angle tomographic reconstructions. Two edge-preserving regularizers-one convex, the other nonconvex-are used in numerous simulations to demonstrate the effectiveness of the algorithm under various limited-angle scenarios, and to explore how factors, such as the choice of error norm, angular sampling rate and amount of noise, affect the reconstruction quality and algorithm performance. These simulation results show that for this application, the nonconvex regularizer produces consistently superior results

Published in:

Image Processing, IEEE Transactions on  (Volume:7 ,  Issue: 2 )