By Topic

Using Zernike moments for the illumination and geometry invariant classification of multispectral texture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lizhi Wang ; Dept. of Electr. & Comput. Eng., California Univ., Irvine, CA, USA ; Healey, G.

We develop a method for recognizing color texture independent of rotation, scale, and illumination. Color texture is modeled using spatial correlation functions defined within and between sensor bands. Using a linear model for surface spectral reflectance with the same number of parameters as the number of sensor classes, we show that illumination and geometry changes in the scene correspond to a linear transformation of the correlation functions and a linear transformation of their coordinates. A several step algorithm that includes scale estimation and correlation moment computation is used to achieve the invariance. The key to the method is the new result that illumination, rotation, and scale changes in the scene correspond to a specific transformation of correlation function Zernike moment matrices. These matrices can be estimated from a color image. This relationship is used to derive an efficient algorithm for recognition. The algorithm is substantiated using classification results on over 200 images of color textures obtained under various illumination conditions and geometric configurations

Published in:

Image Processing, IEEE Transactions on  (Volume:7 ,  Issue: 2 )