Cart (Loading....) | Create Account
Close category search window
 

Improving image quality in poor visibility conditions using a physical model for contrast degradation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Oakley, J.P. ; Sch. of Eng., Manchester Univ., UK ; Satherley, B.L.

In daylight viewing conditions, image contrast is often significantly degraded by atmospheric aerosols such as haze and fog. This paper introduces a method for reducing this degradation in situations in which the scene geometry is known. Contrast is lost because light is scattered toward the sensor by the aerosol particles and because the light reflected by the terrain is attenuated by the aerosol. This degradation is approximately characterized by a simple, physically based model with three parameters. The method involves two steps: first, an inverse problem is solved in order to recover the three model parameters; then, for each pixel, the relative contributions of scattered and reflected flux are estimated. The estimated scatter contribution is simply subtracted from the pixel value and the remainder is scaled to compensate for aerosol attenuation. This paper describes the image processing algorithm and presents an analysis of the signal-to-noise ratio (SNR) in the resulting enhanced image. This analysis shows that the SNR decreases exponentially with range. A temporal filter structure is proposed to solve this problem. Results are presented for two image sequences taken from an airborne camera in hazy conditions and one sequence in clear conditions. A satisfactory agreement between the model and the experimental data is shown for the haze conditions. A significant improvement in image quality is demonstrated when using the contrast enhancement algorithm in conjuction with a temporal filter

Published in:

Image Processing, IEEE Transactions on  (Volume:7 ,  Issue: 2 )

Date of Publication:

Feb 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.