By Topic

Micromachined patch antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
I. Papapolymerou ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; R. Franklin Drayton ; L. P. B. Katehi

This paper presents the use of selective lateral etching based on micromachining techniques to enhance the performance of rectangular microstrip patch antennas printed on high-index wafers such as silicon, GaAs, and InP. Micromachined patch antennas on Si substrates have shown superior performance over conventional designs where the bandwidth and the efficiency have increased by as much as 64% and 28%, respectively. In this work, the silicon material is removed laterally underneath the patch antenna to produce a cavity that consists of a mixture of air and substrate with equal or unequal thicknesses. Characterization of the micromachined patch antenna is presented herein and includes a discussion on the bandwidth improvements, radiation patterns, and efficiency of the patch. In addition, antenna placement on the reduced index cavity with respect to the high-index substrate is described to achieve efficiency improvements over conventional patch antennas

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:46 ,  Issue: 2 )