By Topic

Toward Real-Time Pedestrian Detection Based on a Deformable Template Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Marco Pedersoli ; Comput. Vision Center, Univ. Autonoma de Barcelona, Cerdanyola del Vallès, Spain ; Jordi Gonz├ález ; Xu Hu ; Xavier Roca

Most advanced driving assistance systems already include pedestrian detection systems. Unfortunately, there is still a tradeoff between precision and real time. For a reliable detection, excellent precision-recall such a tradeoff is needed to detect as many pedestrians as possible while, at the same time, avoiding too many false alarms; in addition, a very fast computation is needed for fast reactions to dangerous situations. Recently, novel approaches based on deformable templates have been proposed since these show a reasonable detection performance although they are computationally too expensive for real-time performance. In this paper, we present a system for pedestrian detection based on a hierarchical multiresolution part-based model. The proposed system is able to achieve state-of-the-art detection accuracy due to the local deformations of the parts while exhibiting a speedup of more than one order of magnitude due to a fast coarse-to-fine inference technique. Moreover, our system explicitly infers the level of resolution available so that the detection of small examples is feasible with a very reduced computational cost. We conclude this contribution by presenting how a graphics processing unit-optimized implementation of our proposed system is suitable for real-time pedestrian detection in terms of both accuracy and speed.

Published in:

IEEE Transactions on Intelligent Transportation Systems  (Volume:15 ,  Issue: 1 )