By Topic

Throughput-delay analysis of one-to-many wireless multi-hop flows based on random linear network coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tao Shang ; School of Electronic and Information Engineering at Beihang University, Beijing, China ; Yong Fan ; Jianwei Liu

This paper addresses the issue of throughput-delay of one-to-many wireless multi-hop flows based on random linear network coding (RLNC). Existing research results have been focusing on the single-hop model which is not suitable for wireless multi-hop networks. In addition, the conditions of related system model are too idealistic. To address these limitations, we herein investigate the performance of a wireless multi-hop network, focusing on the one-to-many flows. Firstly, a system model with multi-hop delay was constructed; secondly, the transmission schemes of system model were gradually improved in terms of practical conditions such as limited queue length and asynchronous forwarding way; thirdly, the mean delay and the mean throughput were quantified in terms of coding window size if and number of destination nodes N for the wireless multi-hop transmission. Our findings show a clear relationship between the multi-hop transmission performance and the network coding parameters. This study results will contribute significantly to the evaluation and the optimization of network coding method.

Published in:

Journal of Communications and Networks  (Volume:15 ,  Issue: 4 )