By Topic

Adaptive fuzzy command acquisition with reinforcement learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chin-Teng Lin ; Dept. of Electr. & Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Ming-Chih Kan

Proposes a four-layered adaptive fuzzy command acquisition network (AFCAN) for adaptively acquiring fuzzy command via interactions with the user or environment. It can catch the intended information from a sentence (command) given in natural language with fuzzy predicates. The intended information includes a meaningful semantic action and the fuzzy linguistic information of that action. The proposed AFCAN has three important features. First, we can make no restrictions whatever on the fuzzy command input, which is used to specify the desired information, and the network requires no acoustic, prosodic, grammar, and syntactic structure, Second, the linguistic information of an action is learned adaptively and it is represented by fuzzy numbers based on α-level sets. Third, the network can learn during the course of performing the task. The AFCAN can perform off-line as well as online learning. For the off-line learning, the mutual-information (MI) supervised learning scheme and the fuzzy backpropagation (FBP) learning scheme are employed when the training data are available in advance. The former learning scheme is used to learn meaningful semantic actions and the latter learn linguistic information. The AFCAN can also perform online learning interactively when it is in use for fuzzy command acquisition. For the online learning, the MI-reinforcement learning scheme and the fuzzy reinforcement learning scheme are developed for the online learning of meaningful actions and linguistic information, respectively. An experimental system is constructed to illustrate the performance and applicability of the proposed AFCAN

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:6 ,  Issue: 1 )