By Topic

Diversity Analysis of Bit-Interleaved Coded Multiple Beamforming with Orthogonal Frequency Division Multiplexing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Boyu Li ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California, Irvine, Irvine, CA, USA ; Ayanoglu, E.

For broadband wireless communication systems, Orthogonal Frequency Division Multiplexing (OFDM) has been combined with Multi-Input Multi-Output (MIMO) techniques. Bit-Interleaved Coded Multiple Beamforming (BICMB) can achieve both spatial diversity and spatial multiplexing for flat fading MIMO channels. For frequency selective fading MIMO channels, BICMB with OFDM (BICMB-OFDM) can be applied to achieve both spatial diversity and multipath diversity, making it an important technique. However, analyzing the diversity of BICMB-OFDM is a challenging problem. In this paper, the diversity analysis of BICMB-OFDM is carried out. First, the maximum achievable diversity is derived and a full diversity condition RcSL ≤ 1 is proved, where Rc, S, and L are the code rate, the number of parallel steams transmitted at each subcarrier, and the number of channel taps, respectively. Then, the performance degradation due to the correlation among subcarriers is investigated. Finally, the subcarrier grouping technique is employed to combat the performance degradation and provide multi-user compatibility.

Published in:

Communications, IEEE Transactions on  (Volume:61 ,  Issue: 9 )