Cart (Loading....) | Create Account
Close category search window
 

Novel three-phase asymmetrical cascaded multilevel voltage source inverter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Belkamel, H. ; Dept. of Electr. Eng., Univ. of Malaya, Kuala Lumpur, Malaysia ; Mekhilef, S. ; Masaoud, A. ; Naeim, M.A.

Series connection of power cells in asymmetrical cascaded configurations helps to cancel redundant output levels and maximise the number of different levels generated by the inverter. A new configuration of three-phase multilevel asymmetrical cascaded voltage source inverter is presented. This structure consists of series-connected sub-multilevel inverters blocks. The number of utilised switches, insulated gate driver circuits, voltage standing on switches, installation area and cost are considerably reduced. Cascaded-cell DC voltages in each inverter leg form an arithmetic sequence with common difference of E. With the selected inverter DC sources, high-frequency pulse-width modulation (PWM) control methods can be effectively applied without loss of modularity. Low-frequency and sinusoidal PWM techniques were successfully applied. Hence, high flexibility in the modulation of the proposed inverter is demonstrated. The prototype of the suggested inverter was manufactured and the obtained simulation and hardware results ensured the feasibility of the configuration, and the compatibility of both modulation techniques was accurately noted. Lastly, the semiconductor losses in the converter were calculated using simulation models. Based on the analysis of the total power losses, the proposed inverter provided high efficiency at different operating conditions.

Published in:

Power Electronics, IET  (Volume:6 ,  Issue: 8 )

Date of Publication:

September 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.