Cart (Loading....) | Create Account
Close category search window
 

Analytical approach to tuning of model predictive control for first-order plus dead time models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bagheri, P. ; Dept. of Electr. & Comput. Eng., K.N. Toosi Univ. of Technol., Tehran, Iran ; Sedigh, A.K.

Model predictive control (MPC) is an effective control strategy in the presence of system constraints. The successful implementation of MPC in practical applications requires appropriate tuning of the controller parameters. An analytical tuning strategy for MPC of first-order plus dead time (FOPDT) systems is presented when the constraints are inactive. The available tuning methods are generally based on the user's experience and experimental results. Some tuning methods lead to a complex optimisation problem that provides numerical results for the controller parameters. On the other hand, many industrial plants can be effectively described by FOPDT models, and this model is therefore used to derive analytical results for the MPC tuning in a pole placement framework. Then, the issues of closed-loop stability and possible achievable performance are addressed. In the case of no active constraints, it is shown that for the FOPDT models, control horizons subsequent to two do not improve the achievable performance and control horizon of two provides the maximum achievable performance. Then, MPC tuning for higher order plants approximated by FOPDT models is considered. Finally, simulation results are employed to show the effectiveness of the proposed tuning formulas.

Published in:

Control Theory & Applications, IET  (Volume:7 ,  Issue: 14 )

Date of Publication:

September 19 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.