By Topic

A Survey on CPG-Inspired Control Models and System Implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Junzhi Yu ; State Key Lab. of Manage. & Control for Complex Syst., Inst. of Autom., Beijing, China ; Min Tan ; Jian Chen ; Jianwei Zhang

This paper surveys the developments of the last 20 years in the field of central pattern generator (CPG) inspired locomotion control, with particular emphasis on the fast emerging robotics-related applications. Functioning as a biological neural network, CPGs can be considered as a group of coupled neurons that generate rhythmic signals without sensory feedback; however, sensory feedback is needed to shape the CPG signals. The basic idea in engineering endeavors is to replicate this intrinsic, computationally efficient, distributed control mechanism for multiple articulated joints, or multi-DOF control cases. In terms of various abstraction levels, existing CPG control models and their extensions are reviewed with a focus on the relative advantages and disadvantages of the models, including ease of design and implementation. The main issues arising from design, optimization, and implementation of the CPG-based control as well as possible alternatives are further discussed, with an attempt to shed more light on locomotion control-oriented theories and applications. The design challenges and trends associated with the further advancement of this area are also summarized.

Published in:

IEEE Transactions on Neural Networks and Learning Systems  (Volume:25 ,  Issue: 3 )