By Topic

Design and Test of an Electric Field Sensor for the Measurement of High-Voltage Nanosecond Pulses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Soo Won Lim ; Grad. Sch. of Sci. & Technol., Kumamoto Univ., Kumamoto, Japan ; Chuhyun Cho ; Yun Sik Jin ; Young Bae Kim
more authors

D-dot sensors were designed and tested for the measurement of nanosecond high-voltage pulses. Computer simulation results showed that the I-type sensor has an acceptable response in a wide range of frequency among three types of sensors such as I, ∇, and T. The I-type sensor has coaxial cylinder shape, which consists of a brass inner conductor, a Teflon middle dielectric, and an aluminum outer conductor. Since I-type showed good linearity up to 1.2 GHz, we calibrated the sensor using relatively low frequencies. The attenuation ratio of the integrated signal of the D-dot sensor was calibrated against a standard high-voltage probe (Tektronix P6015, 75-MHz bandwidth). The measured attenuation ratio and standard deviation were 7.70×1012 and 0.0608×1012, respectively. The measured attenuation ratio was in good agreement with the calculated ratio within 7.5%. The operational characteristics of the sensor were tested by measuring nanosecond voltage pulses generated from a Blumlein pulse forming line. We measured high-voltage pulses having 300 kV, 5-ns pulsewidth, and 300-ps rise time using the designed D-dot sensor. The accuracy of the sensor enabled detection of several tens of picosecond differences in the rise time of the high-voltage pulses resulting from different gap distances in the peaking switch.

Published in:

Plasma Science, IEEE Transactions on  (Volume:41 ,  Issue: 10 )