By Topic

Optimization of Wavefront Distortions and Thermal-Stress Induced Birefringence in a Cryogenically-Cooled Multislab Laser Amplifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ondrej Slezak ; HiLASE Project, Institute of Physics, The Academy of Sciences of the Czech Republic, Prague, Czech Republic ; Antonio Lucianetti ; Martin Divoky ; Magdalena Sawicka
more authors

The optimization of the Yb:YAG gain medium and absorbing clad parameters was investigated for efficient heat removal in cryogenically-cooled multislab amplifiers operating in the kilowatt average power range (100 J/10 Hz). The 3-D distributions of temperature, stress, strain, and birefringence were calculated by a finite element analysis. Based on these data, the space-resolved optical path difference and depolarization losses were determined considering eight slabs, two laser heads, and four passes. We have found that a combination of properly designed (doping/width) index matching material and helium cryogenic cooling leads to a quasi-constant transverse temperature distribution in the pump area and a very small axial thermal gradient in the slab. It is shown that the resulting thermally induced phase aberrations, stresses, and average depolarization are rendered insignificant.

Published in:

IEEE Journal of Quantum Electronics  (Volume:49 ,  Issue: 11 )