By Topic

A piezoelectric energy harvester with increased bandwidth based on beam flexural vibrations in perpendicular directions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Peng Li ; State Key Lab. for Mech. Struct., Strength, & Vibration, Xi'an Jiaotong Univ., Xi'an, China ; Feng Jin ; Jiashi Yang

We propose a new structure for piezoelectric energy harvesters. It consists of an elastic beam with two pairs of piezoelectric films operating with the fundamental flexural modes in perpendicular directions. A one-dimensional model is developed and used to analyze the proposed structure. The output power density is calculated and examined. Results show that, with simultaneous flexural motions in two perpendicular directions, the output power has two peaks close to each other resulting from the two fundamental flexural resonances. The distance between the two peaks can be adjusted through design to make the two peaks merge into one wide peak. Hence, the frequency bandwidth through which energy can be harvested is roughly doubled when compared with conventional beam bimorph energy harvesters operating with flexural motion in one direction and one resonance only.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:60 ,  Issue: 10 )