By Topic

Improving the accuracy of the rotor resistance estimate for vector-controlled induction machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Wade ; Dept. of Comput. & Electr. Eng., Heriot-Watt Univ., Edinburgh, UK ; M. W. Dunnigan ; B. W. Williams

The estimation of rotor resistance in a vector-controlled induction machine is necessary to achieve high performance torque control. The extended Kalman filter (EKF) or the extended Luenberger observer (ELO) have been used to estimate this machine parameter. Three techniques are presented for use with the EKF and ELO which improve the accuracy of the rotor resistance estimate, either in both estimators, or in the EKF alone. These techniques are: the use of the synchronous two-axis (de-qe) frame model of the induction machine with the EKF, the inclusion of the core loss resistance to precalculate the phase currents used by the estimators, and the injection of a high frequency sine wave on the flux current reference command. These improvements are achieved without increasing the complexity of the estimation algorithms. The consequent improvements in the rotor resistance estimation are illustrated through simulation and practical implementation of a vector-controlled induction machine. A high performance digital signal processor (DSP) is used in the practical implementation

Published in:

IEE Proceedings - Electric Power Applications  (Volume:144 ,  Issue: 5 )