By Topic

Joint detection/decoding algorithms for non-binary low-density parity-check codes over inter-symbol interference channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shancheng Zhao ; Department of Electronics and Communication Engineering, Sun Yat-sen University, Guangzhou 510275, People's Republic of China ; Zhifei Lu ; Xiao Ma ; Baoming Bai

This study is concerned with the application of non-binary low-density parity-check (NB-LDPC) codes to binary input inter-symbol interference channels. Two low-complexity joint detection/decoding algorithms are proposed. One is referred to as max-log-MAP/X-EMS algorithm, which is implemented by exchanging soft messages between the max-log-MAP detector and the extended min-sum (EMS) decoder. The max-log-MAP/X-EMS algorithm is applicable to general NB-LDPC codes. The other one, referred to as Viterbi/GMLGD algorithm, is designed in particular for majority-logic decodable NB-LDPC codes. The Viterbi/GMLGD algorithm works in an iterative manner by exchanging hard-decisions between the Viterbi detector and the generalised majority-logic decoder (GMLGD). As a by-product, a variant of the original EMS algorithm is proposed, which is referred to as μ-EMS algorithm. In the μ-EMS algorithm, the messages are truncated according to an adaptive threshold, resulting in a more efficient algorithm. Simulations results show that the max-log-MAP/X-EMS algorithm performs as well as the traditional iterative detection/decoding algorithm based on the BCJR algorithm and theQ-ary sum-product algorithm, but with lower complexity. The complexity can be further reduced for majority-logic decodable NB-LDPC codes by executing the Viterbi/GMLGD algorithm with a performance degradation within one dB. These algorithms provide good candidates for trade-offs between performance and complexity.

Published in:

IET Communications  (Volume:7 ,  Issue: 14 )