By Topic

Liftoff of a Motor-Driven, Flapping-Wing Microaerial Vehicle Capable of Resonance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lindsey Hines ; Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Domenico Campolo ; Metin Sitti

This study presents the design of a novel minimalist liftoff-capable flapping-wing microaerial vehicle. Two wings are each directly driven by a geared pager motor by utilizing an elastic element for energy recovery, resulting in a maximum lift-to-weight ratio of 1.4 at 10 Hz for the 2.7 g system. Separate directly driven wings allow the system to both resonate and control individual wing flapping angle, reducing necessary power consumption, as well as allowing the production of roll and pitch body torques. With a series of varied prototypes, system performance is examined with change in wing offset from center of rotation and elastic element stiffness. Prototype liftoff is demonstrated with open loop driving a tethered prototype without guide wires. A dynamic model of the system is adapted and compared with the prototype experimental results for later use in prototype optimization.

Published in:

IEEE Transactions on Robotics  (Volume:30 ,  Issue: 1 )