By Topic

Reducing the Fault Current and Overvoltage in a Distribution System With Distributed Generation Units Through an Active Type SFCL

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lei Chen ; Sch. of Electr. Eng., Wuhan Univ., Wuhan, China ; Changhong Deng ; Fang Guo ; Yuejin Tang
more authors

For a power distribution system with distributed generation (DG) units, its fault current and induced overvoltage under abnormal conditions should be taken into account seriously. In consideration that applying superconducting fault current limiter (SFCL) may be a feasible solution, in this paper, the effects of a voltage compensation type active SFCL on them are studied through theoretical derivation and simulation. The active SFCL is composed of an air-core superconducting transformer and a PWM converter. The magnetic field in the air-core can be controlled by adjusting the converters output current, and then the active SFCLs equivalent impedance can be regulated for current-limitation and possible overvoltage suppression. During the study process, in view of the changes in the locations of the DG units connected to the system, the DG units injection capacities and the fault positions, the active SFCLs current-limiting and overvoltage-suppressing characteristics are both simulated in MATLAB. The simulation results show that the active SFCL can play an obvious role in restraining the fault current and overvoltage, and it can contribute to avoiding damage on the relevant distribution equipment and improve the systems safety and reliability.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:24 ,  Issue: 3 )