By Topic

Verification of Reconfigurable Binary Decision Diagram-Based Single-Electron Transistor Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yung-Chih Chen ; Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, Taiwan ; Chun-Yao Wang ; Ching-Yi Huang

Recently, single-electron transistors (SETs) have been attracting substantial attention and are considered candidate devices for future integrated circuits due to their ultralow power consumption. To realize SETs, a binary decision diagram-based SET array is proposed as a suitable candidate for implementing Boolean circuits. Then, some works started developing computer-aided design techniques for this new architecture. However, most of them focused on the development of mapping techniques. How to verify the mapping results is still an open problem. Thus, in this paper, we address this problem and develop a satisfiability (SAT)-based verification method. We propose a transformation approach to model the functionality of a mapped SET array as a conjunctive normal form formula. Then, the problem that whether the SET array is functionally equivalent to its specification circuit can be solved with a SAT solver. The experimental results show that the proposed method can successfully verify correct and incorrect SET array implementations with reasonable verification time.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:32 ,  Issue: 10 )