By Topic

Energy Efficiency of Load-Adaptively Operated Telecommunication Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Lange, C. ; Telekom Innovation Labs., Deutsche Telekom AG, Berlin, Germany ; Kosiankowski, D. ; Betker, A. ; Simon, H.
more authors

Energy consumption and energy efficiency of telecommunication networks are important for network operators regarding both, cost and sustainability aspects. Among several options, load-adaptive network operation-where the provided network capacity is coupled dynamically to the temporally fluctuating traffic characteristics-is a prominent and promising opportunity to improve network energy efficiency. General principles of load-adaptive network operation regimes are presented for a universal broadband operator network and their effects to network energy efficiency are explored. Based on a structure model of a telecommunication network, techniques for adjusting the capacity load-adaptively in different network sections are discussed with respect to the energy-saving potential, the current status and the challenges for application in networks ahead. Operator network sections as well as customer networks are covered; double-digit percentages of energy savings per network section are obtained in load-adaptive operation regimes as compared to the conventional network operation. When applying all those techniques in a holistic view to current realistic large operator networks, the double-digit per-section improvements transform into a significantly lower overall energy saving potential: This is caused by large parts of legacy network equipment forming a base electrical load not amenable to load-adaptive operation. When coupling the power consumption of networks to the temporally and spatially varying traffic demands in load-adaptive regimes their currently very predictable power draw behavior changes and may have significant effects in the interplay with power utilities in the upcoming Smart Energy transformation.

Published in:

Lightwave Technology, Journal of  (Volume:32 ,  Issue: 4 )