By Topic

Policy management for BGP routing convergence using inter-AS relationship

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jeong, Sang-Jin ; Information and Communications University 58-4, Hwaam-dong, Yuseong-gu, Taejon, Korea ; Youn, Chan-Hyun ; Choi, Tae-Sang ; Jeong, Tae-Soo
more authors

The Internet routing instability, or the rapid fluctuation of network reachability information, is an important problem currently facing the Internet engineering community. High levels of network instability can lead to packet loss, increased network latency, and delayed routing convergence. At the extreme, high levels of routing instability can lead to the loss of internal connectivity in wide-area networks. In this paper, we investigate the variation of domain degree and domain count of the inter-domain network over time by using linear regression model in order to analyze the topology variation of inter-domain network. We also propose an efficient policy management model to reduce the instability in the inter-domain routing system. The proposed model can be used to identify whether a routing policy is adequate to reduce convergence time that is required to return to a normal state when BGP routing instability happens. Experimental analysis shows that the proposed model can be used to set up routing policy in domains for the purpose of minimizing the effects and the propagation of BGP routing instability.

Published in:

Communications and Networks, Journal of  (Volume:3 ,  Issue: 4 )