By Topic

QDMR: An efficient QoS dependent multicast routing algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Matta, Ibrahim ; Computer Science Department, Boston University, Boston, MA 02215, USA ; Guo, Liang

Many distributed real-time applications, such as audio-and video-conferencing and collaborative systems, require multicast support from the underlying network. Multicasting involves the delivery of messages over a tree rooted at the sender and whose paths lead to the various receivers. A major objective of the routing protocol is to build a tree with minimum cost. Finding such a tree is known to be computationally expensive, and many heuristics have been proposed to efficiently find near-optimal trees. Moreover, some heuristics exist to efficiently find multicast trees that are of low cost and satisfy Quality-of-Service (QoS) (e.g., delay) delivery constraints required by real-time applications. However, these heuristics are not fast enough for large-scale networks. In this paper, we present a fast algorithm, called QDMR, for generating delay-constrained low-cost multicast routing trees. A salient feature of QDMR is that it dynamically adjusts its low-cost tree construction policy based on how far the current on-tree node is from violating the QoS delay bound. This QoS dependent (adaptive) tree construction, together with the capability of merging least-delay paths into the low-cost tree in case of stringent delay requirements, lead to the following properties: 1) QDMR guarantees that a feasible multicast tree (that satisfies the requested delay) will be found if such tree exists; 2) this delay-bounded multicast tree is very rapidly generated; and 3) the tree has low cost. Through analysis and extensive simulations, we confirm the premise of QDMR by comparing it to many existing multicast algorithms.

Published in:

Communications and Networks, Journal of  (Volume:2 ,  Issue: 2 )