Cart (Loading....) | Create Account
Close category search window
 

Internet roundtrip delay prediction using the maximum entropy principle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liu, Peter Xiaoping ; Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada K1S 5B6 ; Meng, Max Q-H ; Gu, Jason

Internet roundtrip delay/time (RTT) prediction plays an important role in detecting packet losses in reliable transport protocols for traditional web applications and determining proper transmission rates in many rate-based TCP-friendly protocols for Internet-based real-time applications. The widely adopted autoregressive and moving average (ARMA) model with fixed-parameters is shown to be insufficient for all scenarios due to its intrinsic limitation that it filters out all high-frequency components of RTT dynamics. In this paper, we introduce a novel parameter-varying RTT model for Internet roundtrip time prediction based on the information theory and the maximum entropy principle (MEP). Since the coefficients of the proposed RTT model are updated dynamically, the model is adaptive and it tracks RTT dynamics rapidly. The results of our experiments show that the MEP algorithm works better than the ARMA method in both RTT prediction and RTO estimation.

Published in:

Communications and Networks, Journal of  (Volume:5 ,  Issue: 1 )

Date of Publication:

March 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.