Cart (Loading....) | Create Account
Close category search window

Receiver techniques for ultra-wide-band multiuser systems over fading multipath channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhou, Xiaobo ; Dept. of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA ; Wang, Xiaodong

We treat the problem of channel estimation and interference cancellation in multiuser ultra-wide-band (UWB) communication systems over multipath fading channels. The UWB system under consideration employs a random time-hopping impulse radio format. We develop a channel estimation method based on linear weighted algorithm. An iterative channel estimation and interference cancellation scheme is proposed to successively improve the receiver performance. We also consider systems employing multiple transmit and/or receive antennas. For systems with multiple receive antennas, we develop a diversity receiver for the well-separated antennas. For systems with multiple transmit antennas, we propose to make use of Alamouti's space-time transmission scheme, and develop the corresponding channel estimation and interference cancellation receiver techniques. Simulation results are provided to demonstrate the performance of various UWB receiver techniques developed in this paper.

Published in:

Communications and Networks, Journal of  (Volume:5 ,  Issue: 2 )

Date of Publication:

June 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.