By Topic

Error performance of serially concatenated space-time coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Altunbas, Ibrahim ; Electrical and Electronics Faculty, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey ; Yongacoglu, Abbas

In this paper, we investigate the error performance of a serially concatenated system using a nonrecursive convolutional code as the outer code and a recursive QPSK space-time trellis code as the inner code on quasi-static and rapid Rayleigh fading channels. At the receiver, we consider iterative decoding based on the maximum a posteriori (MAP) algorithm. The performance is evaluated by means of computer simulations and it is shown that better error performance can be obtained by using low complexity outer and/or inner codes and the Euclidean distance criterion based recursive space-time inner codes. We also obtain new systems with large number of trasmit and/or receive antennas providing good error performance.

Published in:

Communications and Networks, Journal of  (Volume:5 ,  Issue: 2 )