By Topic

Dynamic Optimal Power Flow for Active Distribution Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gill, S. ; Wind Energy Syst. Centre for Doctoral Training, Univ. of Strathclyde, Glasgow, UK ; Kockar, I. ; Ault, G.W.

Active Network Management is a philosophy for the operation of distribution networks with high penetrations of renewable distributed generation. Technologies such as energy storage and flexible demand are now beginning to be included in Active Network Management (ANM) schemes. Optimizing the operation of these schemes requires consideration of inter-temporal linkages as well as network power flow effects. Network effects are included in optimal power flow (OPF) solutions but this only optimizes for a single point in time. Dynamic optimal power flow (DOPF) is an extension of OPF to cover multiple time periods. This paper reviews the generic formulation of DOPF before developing a framework for modeling energy technologies with inter-temporal characteristics in an ANM context. The framework includes the optimization of nonfirm connected generation, principles of access for nonfirm generators, energy storage, and flexible demand. Two objectives based on maximizing export and revenue are developed and a case study is used to illustrate the technique. Results show that DOPF is able to successfully schedule these energy technologies. DOPF schedules energy storage and flexible demand to reduce generator curtailment significantly in the case study. Finally, the role of DOPF in analyzing ANM schemes is discussed with reference to extending the optimization framework to include other technologies and objectives.

Published in:

Power Systems, IEEE Transactions on  (Volume:29 ,  Issue: 1 )