By Topic

Fiber-Nonlinearity-Tolerant Superchannel Transmission via Nonlinear Noise Squeezing and Generalized Phase-Conjugated Twin Waves

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiang Liu ; Bell Labs., Alcatel-Lucent, Holmdel, NJ, USA ; S. Chandrasekhar ; P. J. Winzer ; R. W. Tkach
more authors

We present fiber-nonlinearity-tolerant transmission of polarization-division multiplexed binary phase-shift keying (PDM-BPSK) through a nonlinear noise squeezing (NLNS) effect that is achieved by optimized digital electronic dispersion precompensation. With the improved nonlinear tolerance, a 406.6-Gb/s superchannel consisting of eight 37.5-GHz-spaced 32-Gbaud Nyquist-filtered PDM-BPSK signals is transmitted over a 12800-km (160 × 80-km) EDFA-only amplified dispersion-unmanaged nonzero-dispersion-shifted fiber link. We establish a connection between the beneficial NLNS effect and the recently reported phase-conjugated twin wave (PCTW) concept and further generalize the PCTW concept to vector twin waves that are traveling through a fiber link along orthogonal dimensions such as time and space. Moreover, we apply the PCTW concept to wavelength-division-multiplexed (WDM) superchannel transmission by treating the entire WDM superchannel as a twin wave to further mitigate interchannel nonlinear effects. Through numerical simulations, we show that the generalized PCTW technique can effectively mitigate interchannel nonlinear impairments, in addition to mitigating intrachannel nonlinear impairments.

Published in:

Journal of Lightwave Technology  (Volume:32 ,  Issue: 4 )