By Topic

Discriminator design considerations for time-interval measurement circuits in collider detector systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Simpson, M.L. ; Oak Ridge Nat. Lab., TN, USA ; Paulus, M.J.

An analysis of timing jitter from leading-edge discriminators (LED's) and constant-fraction discriminators (CFD's) is presented. The jitter is calculated for the cases of random white noise, coherent noise (e.g., digital switching noise or ac power-line hum), and mixed (random and coherent) noise for both discriminator architectures. A general jitter equation valid for all of these conditions is derived. It is shown that the discriminator bandwidth for minimum jitter is strongly dependent on the amount of coherent noise. This effect is shown to be more pronounced for the LED. Even though off-line walk adjustments are possible for many timing measurements, the CFD is shown to provide a major advantage by acting as a correlated double sampler that removes much of the coherent noise expected in large, multichannel collider detector systems.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:45 ,  Issue: 1 )