By Topic

A neuro-fuzzy controller for axial power distribution an nuclear reactors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Man Gyun Na ; Nucl. Eng. Dept., Chosun Univ., Kwangju, South Korea ; Upadhyaya, B.R.

A neuro-fuzzy control algorithm is applied for the core power distribution in a pressurized water reactor. The inputs of the neural fuzzy system are composed of data from each region of the reactor core. Rule outputs consist of linear combinations of their inputs (first-order Sugeno-Takagi type). The consequent and antecedent parameters of the fuzzy rules are updated by the backpropagation method. The reactor model used for computer simulations is a two-point xenon oscillation model based on the nonlinear xenon and iodine balance equations and the one group, one-dimensional neutron diffusion equation having nonlinear power reactivity feedback. The reactor core is axially divided into two regions, and each region has one input and one output and is coupled with the other region. The interaction between the regions of the reactor core is treated by a decoupling scheme. This proposed control method exhibits very fast response to a step or a ramp change of target axial offset without any residual flux oscillations between the upper and lower halves of the reactor core.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:45 ,  Issue: 1 )