Cart (Loading....) | Create Account
Close category search window
 

Online Seizure Prediction Using an Adaptive Learning Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shouyi Wang ; Dept. of Ind. & Manuf. Syst. Eng., Univ. of Texas at Arlington, Arlington, TX, USA ; Chaovalitwongse, W.A. ; Wong, S.

Epilepsy is one of the most common neurological disorders, characterized by recurrent seizures. Being able to predict impending seizures could greatly improve the lives of patients with epilepsy. In this study, we propose a new adaptive learning approach for online seizure prediction based on analysis of electroencephalogram (EEG) recordings. For each individual patient, we construct baseline patterns of normal and preseizure EEG samples, continuously monitor sliding windows of EEG recordings, and classify each window to normal or preseizure using a $(K)$-nearest-neighbor (KNN) method. A new reinforcement learning algorithm is proposed to continuously update both normal and preseizure baseline patterns based on the feedback from prediction result of each window. The proposed approach was evaluated on EEG data from 10 patients with epilepsy. For each one of the 10 patients, the adaptive approach was trained using the recordings containing the first half of seizure occurrences, and tested prospectively on the subsequent recordings. Using a 150-minute prediction horizon, our approach achieved 73 percent sensitivity and 67 percent specificity on average over 10 patients. This result is shown to be far better than those of a nonupdate prediction scheme and two native prediction schemes.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:25 ,  Issue: 12 )

Date of Publication:

Dec. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.