By Topic

Kinematic Optimization for Chemical Mechanical Polishing Based On Statistical Analysis of Particle Trajectories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dewen Zhao ; Tsinghua Univ., Beijing, China ; Tongqing Wang ; Yongyong He ; Xinchun Lu

The abrasive effect of particles is one of the basic mechanical actions in chemical mechanical polishing (CMP). In this paper, numerical simulations of particle sliding trajectories are performed to examine the influence of the kinematic parameters on the polishing uniformity of typical rotary-type CMP equipment. The trajectory simulations are carried out based on the kinematic analysis. The results reveal that the speed ratio α and the period ratio kT0, which represent the coupling relationships among the three basic motions of CMP, are the two major factors affecting the trajectory distribution. Further, a trajectory density parameter is proposed to quantitatively evaluate the global uniformity of the trajectory distributions and to optimize the kinematic parameters for better uniformity. The statistical results of the trajectory density analysis reveal that the trajectory of the wafer edge is denser than that of the wafer central area. To obtain better trajectory uniformity, some particular values of α and kT0, that is, α = 1 and kT0=1, which imply that the basic motions have a special coupling relationship, should be excluded; the preferred kinematic parameter values for CMP are α = 0.91-0.93 and kT0=5-7. This paper provides a basic guide to the kinematic parameter settings of CMP.

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:26 ,  Issue: 4 )