By Topic

Artificial intelligence methods and systems for medical consultation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kulikowski, C.A. ; Dept. of Computer Sci., Rutgers Univ., New Brunswick, NJ, USA

The major AI problems that arise in designing a consultation program involve choices of knowledge representations, diagnostic interpretation strategies, and treatment planning strategies. The need to justify decisions and update the knowledge base in the light of new research findings places a premium on the modularity of a representation and the ease with which its reasoning procedures can be explained. In both diagnosis and treatment decisions, the relative advantages and disadvantages of different schemes for quantifying the uncertainty of inferences raises difficult issues of a formal logical nature, as well as many specific practical problems of system design. An important insight that has resulted from the design of several artificial intelligence systems is that robustness of performance in the presence of many uncertainty relationships can be achieved by eliciting from the expert a segmentation of knowledge that will also provide a rich network of deterministic relationships to interweave the space of hypotheses.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-2 ,  Issue: 5 )