By Topic

Automated classification of nucleated blood cells using a binary tree classifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mui, J.K. ; Bell Labs., Naperville, IL, USA ; King-Sun Fu

Describes the interactive design of a binary tree classifier. The binary tree classifier with a quadratic discriminant function using up to ten features at each nonterminal node was applied to classify 1294 cells into one of 17 classes. Classification accuracies of 83 percent and 77 percent were obtained by the binary tree classifier using the resubstitution and the leave-one-out methods of error estimation, respectively, whereas the existing results using the same data are 71 percent and 67 percent using a single stage linear classifier with 20 features and the resubstitution and the half-and-half methods of error estimation, respectively.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-2 ,  Issue: 5 )