Cart (Loading....) | Create Account
Close category search window

The parallel implementation of the waveform relaxation method for transient stability simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Crow, M.L. ; Dept. of Electr. & Comput. Eng., Illinois Univ, Urbana-Champaign, IL, USA ; Ilic, M.

The WR (waveform relaxation) algorithm is extended to a structure-preserving power system model in which the loads are retained. This results in a system of differential/algebraic equations (DAEs). Power system exhibit several unique dynamic properties which may be exploited in an advantageous manner by the WR algorithm. These physical properties include the coherency properties of the power system which lead to the partitions for the textured model approach, the near diagonal dominance which leads to longer windows for uniform convergence, and the localized response from which the multirate capabilities of the WR method can be used. These characteristics enable power systems to obtain more favorable results than were obtained in VLSI simulations. The authors present several theoretical results as well as computational results on parallel implementation

Published in:

Power Systems, IEEE Transactions on  (Volume:5 ,  Issue: 3 )

Date of Publication:

Aug 1990

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.