By Topic

An Energy Efficient Time-Domain Temperature Sensor for Low-Power On-Chip Thermal Management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Young-Jae An ; Sch. of Electr. & Electron. Eng., Yonsei Univ., Seoul, South Korea ; Kyungho Ryu ; Dong-Hoon Jung ; Seung-Han Woo
more authors

Because temperature variations significantly affect the performance and reliability of highly integrated chips, the thermal management of such chips is an important issue. In this paper, a time-domain process variation calibrated temperature sensor is proposed for on-chip thermal management. For a suitable on-chip implementation, the digitally converted temperature-dependent time signal is used to reduce the area and power consumption of the chip. The proposed temperature sensor is fabricated using a 0.13- μm CMOS technology and has an active area of 0.031 mm2. Measurement results show an energy consumption of 0.67 nJ/conversion at a 430 kHz conversion rate, with 1.2 V supply voltage. Using one-point calibration, the sensing error is found to range from -0.63°C to 1.04°C over a temperature range of 20°C to 120°C.

Published in:

Sensors Journal, IEEE  (Volume:14 ,  Issue: 1 )