By Topic

Scheduling Lot Switching Operations for Cluster Tools

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jun-Ho Lee ; Manuf. Technol. Center, Samsung Electron., Suwon, South Korea ; Hyun-Jung Kim ; Tae-Eog Lee

A cluster tool that consists of several processing modules, a transport robot, and loadlocks is widely used for wafer processing in the semiconductor industry. The cluster tool repeats an identical operational sequence for processing wafers in a lot, and such a cyclic operation sequence is determined by the wafer flow pattern and process times of a wafer lot. When a wafer lot changes, the tool operation sequence should be switched accordingly. Switching from a cyclic tool operation sequence to another is subject to deadlocks and unnecessary task delays to avoid scheduling complexity. Hence, it is necessary to have a scheduling method for such frequent lot switchings that prevents a deadlock and reduces the switching time. In this paper, we first develop a Petri net model for lot switching operations and then utilize a mixed integer programming model for an optimal schedule. However, since its practical value is limited, we develop effective heuristic methods for lot switching in single-armed and dual-armed cluster tools. The scheduling strategies adapt prevalent cyclic tool scheduling rules, such as backward and swap sequences. By computational experiments, we prove the efficiency and effectiveness of the proposed scheduling rules.

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:26 ,  Issue: 4 )