By Topic

Achieving k-Barrier Coverage in Hybrid Directional Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhibo Wang ; Sch. of Comput., Wuhan Univ., Wuhan, China ; Jilong Liao ; Qing Cao ; Hairong Qi
more authors

Barrier coverage is a critical issue in wireless sensor networks for security applications (e.g., border protection) where directional sensors (e.g., cameras) are becoming more popular than omni-directional scalar sensors (e.g., microphones). However, barrier coverage cannot be guaranteed after initial random deployment of sensors, especially for directional sensors with limited sensing angles. In this paper, we study how to efficiently use mobile sensors to achieve (k) -barrier coverage. In particular, two problems are studied under two scenarios. First, when only the stationary sensors have been deployed, what is the minimum number of mobile sensors required to form (k) -barrier coverage? Second, when both the stationary and mobile sensors have been pre-deployed, what is the maximum number of barriers that could be formed? To solve these problems, we introduce a novel concept of weighted barrier graph (WBG) and prove that determining the minimum number of mobile sensors required to form (k) -barrier coverage is related with finding (k) vertex-disjoint paths with the minimum total length on the WBG. With this observation, we propose an optimal solution and a greedy solution for each of the two problems. Both analytical and experimental studies demonstrate the effectiveness of the proposed algorithms.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:13 ,  Issue: 7 )