Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Spatially Coupled Ensembles Universally Achieve Capacity Under Belief Propagation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kudekar, S. ; Qualcomm, Bridgewater, NJ, USA ; Richardson, T. ; Urbanke, R.L.

We investigate spatially coupled code ensembles. For transmission over the binary erasure channel, it was recently shown that spatial coupling increases the belief propagation threshold of the ensemble to essentially the maximum a priori threshold of the underlying component ensemble. This explains why convolutional LDPC ensembles, originally introduced by Felström and Zigangirov, perform so well over this channel. We show that the equivalent result holds true for transmission over general binary-input memoryless output-symmetric channels. More precisely, given a desired error probability and a gap to capacity, we can construct a spatially coupled ensemble that fulfills these constraints universally on this class of channels under belief propagation decoding. In fact, most codes in this ensemble have this property. The quantifier universal refers to the single ensemble/code that is good for all channels but we assume that the channel is known at the receiver. The key technical result is a proof that, under belief-propagation decoding, spatially coupled ensembles achieve essentially the area threshold of the underlying uncoupled ensemble. We conclude by discussing some interesting open problems.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 12 )