By Topic

Automated Detection of Driver Fatigue Based on Entropy and Complexity Measures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chi Zhang ; Dept. of Mech. Eng. & Autom., Northeastern Univ., Shenyang, China ; Hong Wang ; Rongrong Fu

This paper presents a real-time method based on various entropy and complexity measures for detection and identification of driving fatigue from recorded electroencephalogram (EEG), electromyogram, and electrooculogram signals. The complexity features were used to distinguish whether the subjects are experienced drivers by calculating the Lempel-Ziv complexity of EEG approximate entropy (ApEn). Different threshold values can be set for the two kinds of drivers individually. The entropy-based features, namely, the wavelet entropy (WE), the peak-to-peak value of ApEn (PP-ApEn), and the peak-to-peak value of sample entropy (PP-SampEn), were extracted from the collected signals to estimate the driving fatigue stages. We proposed WE in a sliding window (WES), PP-ApEn in a sliding window (PP-ApEnS), and PP-SampEn in a sliding window (PP-SampEnS) for real-time analysis of driver fatigue. The real-time features obtained by WE, PP-ApEn, and PP-SampEn with sliding window were applied to artificial neural network for training and testing the system, which gives four situations for the fatigue level of the subjects, namely, normal state, mild fatigue, mood swing, and excessive fatigue. Then, the driver fatigue level can be determined in real time. The accuracy of estimation is about 96.5%-99.5%. Receiver operating characteristic (ROC) curve was used to present the performance of the neural network classifier. The area under the ROC curve is 0.9931. The results show that the developed method is valuable for the application of avoiding some traffic accidents caused by driver's fatigue.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:15 ,  Issue: 1 )