By Topic

VCSEL-Based Optical Frequency Combs: Toward Efficient Single-Device Comb Generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ángel Rubén Criado Serrano ; Electronics Technology Department, Universidad Carlos III de Madrid of Leganes, Madrid, Spain ; Cristina de Dios Fernandez ; Estefanía Prior Cano ; Markus Ortsiefer
more authors

Optical frequency combs generators (OFCGs) have demonstrated to be extremely useful tools in a wide variety of applications. The current research trends look toward compact devices that are able to offer high phase correlation between optical lines, and in this sense, mode-locked laser diodes (MLLDs), with repetition frequencies in the few gigahertz (GHz) range, and especially microresonators, with repetition frequencies of hundreds of GHz, are the most promising devices fulfilling these requirements. Nevertheless, focusing in the few GHz frequency rate, MLLDs cannot provide continuous tunability and require special devices that are still far from offering reliability and repeatability for commercial use. In this letter, we demonstrate for the first time the generation of a flat OFCG based on a single commercial vertical cavity surface emitting laser under gain-switching regime with 20 optical lines (spaced by 4.2 GHz) in a 3-dB bandwidth, offering wide tunability range and very high phase correlation between optical modes. This OFCG does not need any external modulator and it is the most energy-efficient OFCG reported to date.

Published in:

IEEE Photonics Technology Letters  (Volume:25 ,  Issue: 20 )