By Topic

Modeling of Multi-Terminal VSC HVDC Systems With Distributed DC Voltage Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Beerten, J. ; Dept. of Electr. Eng. (ESAT), Univ. of Leuven (KU Leuven), Leuven-Heverlee, Belgium ; Cole, S. ; Belmans, R.

This paper discusses the extension of electromechanical stability models of voltage source converter high voltage direct current (VSC HVDC) to multi-terminal (MTDC) systems. The paper introduces a control model with a cascaded DC voltage control at every converter that allows a two-terminal VSC HVDC system to cope with converter outages. When extended to an MTDC system, the model naturally evolves into a master-slave set-up with converters taking over the DC voltage control in case the DC voltage controlling converter fails. It is shown that the model can be used to include a voltage droop control to share the power imbalance after a contingency in the DC system amongst the converters in the system. Finally, the paper discusses two possible model reductions, in line with the assumptions made in transient stability modeling. The control algorithms and VSC HVDC systems have been implemented using both MatDyn, an open source MATLAB transient stability program, as well as the commercial power system simulation package EUROSTAG.

Published in:

Power Systems, IEEE Transactions on  (Volume:29 ,  Issue: 1 )