By Topic

Direct Laser Doping of Poly-Silicon Thin Films Via Laser Chemical Processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
S. Virasawmy ; Solar Energy Research Institute of Singapore, National University of Singapore, Singapore ; N. Palina ; P. I. Widenborg ; A. Kumar
more authors

Laser chemical processing (LCP) is an attractive doping technique for thin films due to its process simplicity, high achievable doping concentrations, and relatively shallow doping depths. During LCP processing, an infinite supply of dopants is available from the pressurized doping medium. In this paper, LCP is employed for n-type doping of poly-silicon thin films on glass. We achieved a peak doping concentration of 6 × 1018 to 1 × 1019 cm-3 and a junction depth up to 350 nm, as determined by electrochemical capacitance-voltage profiling and secondary ion mass spectrometry. We evaluate the structural quality of the LCP-doped layers with cross-sectional transmission electron microscopy (XTEM), as well as ultraviolet reflectance measurements. The LCP-doped regions are of suitable material quality for device fabrication. The resulting sheet resistance and doping levels are promising for a back surface field for poly-silicon thin-film solar cells on glass (e.g., an n+/ n-/ p+/glass layer structure in superstrate configuration).

Published in:

IEEE Journal of Photovoltaics  (Volume:3 ,  Issue: 4 )