Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Robust Pole Assignment for Synthesizing Feedback Control Systems Using Recurrent Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xinyi Le ; Dept. of Mech. & Autom. Eng., Chinese Univ. of Hong Kong, Hong Kong, China ; Jun Wang

This paper presents a neurodynamic optimization approach to robust pole assignment for synthesizing linear control systems via state and output feedback. The problem is formulated as a pseudoconvex optimization problem with robustness measure: i.e., the spectral condition number as the objective function and linear matrix equality constraints for exact pole assignment. Two coupled recurrent neural networks are applied for solving the formulated problem in real time. In contrast to existing approaches, the exponential convergence of the proposed neurodynamics to global optimal solutions can be guaranteed even with lower model complexity in terms of the number of variables. Simulation results of the proposed neurodynamic approach for 11 benchmark problems are reported to demonstrate its superiority.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:25 ,  Issue: 2 )