By Topic

Region-Based Saliency Detection and Its Application in Object Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhixiang Ren ; School of Computer Engineering, Nanyang Technological University, Nanyang, Singapore ; Shenghua Gao ; Liang-Tien Chia ; Ivor Wai-Hung Tsang

The objective of this paper is twofold. First, we introduce an effective region-based solution for saliency detection. Then, we apply the achieved saliency map to better encode the image features for solving object recognition task. To find the perceptually and semantically meaningful salient regions, we extract superpixels based on an adaptive mean shift algorithm as the basic elements for saliency detection. The saliency of each superpixel is measured by using its spatial compactness, which is calculated according to the results of Gaussian mixture model (GMM) clustering. To propagate saliency between similar clusters, we adopt a modified PageRank algorithm to refine the saliency map. Our method not only improves saliency detection through large salient region detection and noise tolerance in messy background, but also generates saliency maps with a well-defined object shape. Experimental results demonstrate the effectiveness of our method. Since the objects usually correspond to salient regions, and these regions usually play more important roles for object recognition than background, we apply our achieved saliency map for object recognition by incorporating a saliency map into sparse coding-based spatial pyramid matching (ScSPM) image representation. To learn a more discriminative codebook and better encode the features corresponding to the patches of the objects, we propose a weighted sparse coding for feature coding. Moreover, we also propose a saliency weighted max pooling to further emphasize the importance of those salient regions in feature pooling module. Experimental results on several datasets illustrate that our weighted ScSPM framework greatly outperforms ScSPM framework, and achieves excellent performance for object recognition.

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:24 ,  Issue: 5 )