By Topic

Optimized Brightness Compensation and Contrast Enhancement for Transmissive Liquid Crystal Displays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chul Lee ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; Jin-Hwan Kim ; Chulwoo Lee ; Chang-Su Kim

An optimized brightness-compensated contrast enhancement (BCCE) algorithm for transmissive liquid crystal displays (LCDs) is proposed in this paper. We first develop a global contrast enhancement scheme to compensate for the reduced brightness when the backlight of an LCD device is dimmed for power reduction. We also derive a distortion model to describe the information loss due to the brightness compensation. Then, we formulate an objective function that consists of the contrast enhancement term and the distortion term. By minimizing the objective function, we maximize the backlight-scaled image contrast, subject to the constraint on the distortion. Simulation results show that the proposed BCCE algorithm provides high-quality images, even when the backlight intensity is reduced by up to 50-70% to save power.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:24 ,  Issue: 4 )