Cart (Loading....) | Create Account
Close category search window
 

A Class of Optimal Rectangular Filtering Matrices for Single-Channel Signal Enhancement in the Time Domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jensen, J.R. ; Dept. of Archit., Design, & Media Technol., Aalborg Univ., Aalborg, Denmark ; Benesty, J. ; Christensen, M.G. ; Jingdong Chen

In this paper, we introduce a new class of optimal rectangular filtering matrices for single-channel speech enhancement. The new class of filters exploits the fact that the dimension of the signal subspace is lower than that of the full space. By doing this, extra degrees of freedom in the filters, that are otherwise reserved for preserving the signal subspace, can be used for achieving an improved output signal-to-noise ratio (SNR). Moreover, the filters allow for explicit control of the tradeoff between noise reduction and speech distortion via the chosen rank of the signal subspace. An interesting aspect is that the framework in which the filters are derived unifies the ideas of optimal filtering and subspace methods. A number of different optimal filter designs are derived in this framework, and the properties and performance of these are studied using both synthetic, periodic signals and real signals. The results show a number of interesting things. Firstly, they show how speech distortion can be traded for noise reduction and vice versa in a seamless manner. Moreover, the introduced filter designs are capable of achieving both the upper and lower bounds for the output SNR via the choice of a single parameter.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:21 ,  Issue: 12 )

Date of Publication:

Dec. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.