By Topic

Learning With Augmented Features for Supervised and Semi-Supervised Heterogeneous Domain Adaptation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wen Li ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Lixin Duan ; Dong Xu ; Tsang, I.W.

In this paper, we study the heterogeneous domain adaptation (HDA) problem, in which the data from the source domain and the target domain are represented by heterogeneous features with different dimensions. By introducing two different projection matrices, we first transform the data from two domains into a common subspace such that the similarity between samples across different domains can be measured. We then propose a new feature mapping function for each domain, which augments the transformed samples with their original features and zeros. Existing supervised learning methods (e.g., SVM and SVR) can be readily employed by incorporating our newly proposed augmented feature representations for supervised HDA. As a showcase, we propose a novel method called Heterogeneous Feature Augmentation (HFA) based on SVM. We show that the proposed formulation can be equivalently derived as a standard Multiple Kernel Learning (MKL) problem, which is convex and thus the global solution can be guaranteed. To additionally utilize the unlabeled data in the target domain, we further propose the semi-supervised HFA (SHFA) which can simultaneously learn the target classifier as well as infer the labels of unlabeled target samples. Comprehensive experiments on three different applications clearly demonstrate that our SHFA and HFA outperform the existing HDA methods.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:36 ,  Issue: 6 )