By Topic

Linearized Multidimensional Earth-Mover's-Distance Gradient Flows

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mendoza, C.S. ; Dept. of Signal Process. & Commun., Univ. of Seville, Seville, Spain ; Perez-Carrasco, J.-A. ; Saez, A. ; Acha, B.
more authors

This paper presents the first framework capable of performing active contour segmentation using Earth Mover's Distance (EMD) to measure dissimilarity between multidimensional feature distributions. EMD is the best known and understood cross-bin histogram distance measure, and as such it allows for meaningful comparisons between distributions, unlike bin-to-bin measures that only account for discrepancies on a bin-to-bin basis. Because EMD is obtained with linear programming techniques, its differential structure with respect to variations in bin weights as the active contour evolves is expressed through sensitivity analysis. Euler-Lagrange equations are then derived from the computed sensitivity at every iteration to produce gradient descent flows. We validate our approach with color image segmentation, in comparison with state-of-the-art Bhattacharyya (bin-to-bin) and 1D EMD (cross-bin) active contours. Some unique advantages of cross-bin comparison are highlighted in our segmentation results: better perceptual value and increased robustness with respect to the initialization.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 12 )