Cart (Loading....) | Create Account
Close category search window
 

Robust Segmentation Based Tracing Using an Adaptive Wrapper for Inducing Priors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jagadeesh, V. ; Center for Bioimage Inf., Univ. of California, Santa Barbara, Santa Barbara, CA, USA ; Manjunath, B.S. ; Anderson, J. ; Jones, B.W.
more authors

Segmentation based tracing algorithms detect the extent and borders of an object in a given frame IZ by propagating results from frames . Although application specific tracers have been forthcoming, techniques that automatically adapt across applications have been less explored. We approach this problem by learning a prior model on topological dynamics that encourages segmentation transitions across frames that are most likely for a given application. Further, we augment a generic tracing technique with a locality sensitive prior derived from dense optic flow fields for deformation guidance. The proposed approach comprises two stages where the generic tracer initially yields multiple segmentation transitions when its parameters are perturbed, and the learnt topology prior subsequently propagates high scoring segmentations. Because the learnt topology model wraps around a generic tracer and adapts it by setting its free parameters, the need for careful parameter tuning is completely obviated. Through extensive experimental validation in surveillance, biological and medical image datasets, we verify the applicability of the proposed model while demonstrating good tracing performance under severe clutter.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 12 )

Date of Publication:

Dec. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.