By Topic

Speed tracking servo control system incorporating traveling-wave-type ultrasonic motor and feasible evaluations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Izuno, Y. ; Electro Technol. Centre, Kubota Corp., Hyogo, Japan ; Izumi, T. ; Yasutsune, H. ; Hiraki, E.
more authors

A variety of ultrasonic motors (USMs) have attracted special interest as a new type of actuator in servo motion control systems. For practical applications, the speed servo control system incorporating the ultrasonic motor developed in Japan has some special unique features. However, this system has several significant problems, such as the inherent speed ripple characteristics, the speed regulation characteristics under the condition of applied disturbance load torque, and the speed tracking characteristics. In order to solve these practical problems, some control schemes of ultrasonic-actuated motor systems have been proposed and discussed theoretically, which include fuzzy reasoning control, adaptive control, repetitive learning control, and neural-network-based learning control. However, it is considered that these control strategies mentioned above have not been sufficiently substantiated from a feasible experimental point of view. This paper presents a newly proposed precise speed tracking servo control system using the compact traveling-wave-type ultrasonic motor. Its proposed control scheme is composed of both the driving frequency control loop with the variable-gain strategy and the applied voltage control loop with the speed ripple reduction strategy of the USM. The improved speed characteristics realized by this proposed control system are demonstrated and evaluated in experiments

Published in:

Industry Applications, IEEE Transactions on  (Volume:34 ,  Issue: 1 )